L'évolution tectono-métamorphique de la zone hercynienne des Rehamna centraux (Maroc)

Bennacer EL MAHI, Christian HOEPFFNER, Mohammed ZAHRAOUI & Abdellah BOUSHABA

Mots-clés : Maroc, Meseta, Rehamna, déformation ductile, zone de cisaillement, métamorphisme barrowien, géothermobarométrie, extension post-orogénique.

بناصر الماحي، كريستيان هوفنر، محمد الزهراوي وعبد الله بوصحابة

التطور التكتوني – التحولي للمنطقة الهرسينية للرحامنة الوسطى (المغرب).

يخضع التطور "البنيوي والتحولي الهرسيني بمنطقة الرحامنة الوسطى، التي تحد الحوض الفحمي لغرب المغرب، لنشاط منطقة النقصص للميسيط الغربية. ويتركز التشوه اللدن والتحول (من النوع الباروي، أي المحتوي محليا على الستوروتيد والدستين في مناطق التقصص) على مستوى هذا الصدع الرئيسي الذي يعيد تنشيط فوالق عميقة للقاعدة. ولقد مكن تحليل البنيات المجهرية والعلاقات بين التبلور والتشوه من التعرف على طورين متزامنين مع التحول، وهما دا و د2 ويمثل د2 امتدادا زمنيا ل دا بسبب تشابه الأنساق والاتجاه لهذين الطورين. وتظهر التبلورات المعزاة للأثر الحراري للوكوكرانيتات الهرسينية، أن التحولين الإقليمي والتماسي مقترنان، وان الخاصية الصمعارية متأخرة بالنسبة التكنونية، ويظهر النطق الحراري للوكوكرانيتات الهرسينية، أن التحولين الإقليمي والتماسي مقترنان، وان الخاصية الصهارية متأخرة بالنسبة التكنونية، ويظهر الناطق العادي لمعدن الكارنت انه تنبلور في وسط تحولي تدريجي، ذي درجة ضعيفة إلى متوسطة ، وتمكن دراسة التحميعات التاهة وت الصنع والحرارة بالمسبار المجهري الإلكتروني، من تأريخ المسار "ضعف لم متوسطة ، وتمكن دراسة المعيات الدالة و والأمفيبوليتية.

RESUME

L'évolution structurale et métamorphique hercynienne de la zone des Rehamna centraux qui borde le bassin carbonifère de l'Ouest marocain, est contrôlée par le fonctionnement de la zone de cisaillement de la Meseta occidentale (Z.C.M.O). La déformation ductile et le métamorphisme (de type barrowien : zone à staurotide, et /ou disthène localement dans les zones de cisaillement) se concentrent au niveau de cet accident majeur qui correspond à la réactivation en contexte de décrochement et/ou de décrochevauchement des fractures du socle profond. L'analyse des microstrucrures et des relations cristallogenèse– déformation a permis de reconnaître deux épisodes syn-métamorphes D_1 et D_2 . D_2 représente probablement un continuum dans le temps de D_1 , en raison des similitudes de style et d'orientation pour ces deux phases syn-métamorphiques. Les cristallisations imputables à l'effet thermique des leucogranites hercyniens montrent d'une part, que le métamorphisme régional et le métamorphisme de contact sont indissociables, et d'autre part, le caractère tardi-tectonique de ces intrusions magmatiques. La zonation "normale" des grenats montre qu'ils ont cristallisé dans un climat de métamorphisme progressif, de faible à moyen degré. L'étude des assemblages métamorphiques ainsi que l'analyse à la microsonde électronique des minéraux géothermobaromètres permettent de tracer le chemin P-T-t suivi par les roches gréso-pélitiques et par les roches amphibolitiques.

ABSTRACT

Tectonic–metamorphic evolution of the central Rehamna Hercynian zone (Morocco). An example of interaction between metamorphism and leucogranite emplacement in the intralithospheric shear zone is provided by the shear zones of the western Meseta. The structural and metamorphic evolution of the Herynian belt of the central Rehamna, which bounds the western Moroccan Carboniferous basin, is controlled by the transcurrent shear zone of the western Meseta. Ductile deformation and metamorphism (Barrowian type : zone of staurolite and/or locally kyanite in shear-zones) are concentrated along this major fault, which corresponds to the reactivation in a strike-slip context or/and in a context of strike-slip-shearing of the deep basement fractures. Analysis of the relationships between cristallogenesis and deformation shows two synmetamorphic episodes, called here D_1 and D_2 . Ductile deformation D_2 represents most probably a continuum of deformation reworking the structures inherited from D_1 . The Hercynian leucogranite cristallisation under thermal effect, shows that on one hand, the thermal and the regional metamorphism are linked, and, on the other hand, that the magmatic intrusions are associated with late tectonics. The normal zonation of garnet indicates that the cristallizing conditions have occurred in a progressive metamorphic climate from lower to medium grade. Studies on metamorphic paragenesis and the geothermobarometrical minerals analysis by the electron microprobe allowed us to establish the P-T-t evolution followed by the sandstone-pelitic rocks and the amphibolitic rocks

El Mahi, B. ; Hoepffner, Ch. ; Zahraoui, M. & Boushaba, A. (2000). L'évolution tectono-métamorphique de la zone hercynienne des Rehamna centraux (Maroc). *Bull. Inst. Sci.*, Rabat, n°22 (1999-2000), pp. 41-57.

Dépôt légal : 36/1984, ISSN : 0253-3243

Figure 1 : Localisation du massif des Rehamna dans le cadre de la Meseta marocaine.

INTRODUCTION

La région qui fait l'objet de la présente étude est située au centre du massif hercynien des Rehamna; ce dernier constitue une boutonnière au sud de la Meseta marocaine, ou Meseta occidentale, qui est un segment de la chaîne hercynienne du Maroc, (Fig. 1) située en bordure NW du Craton ouestafricain (MICHARD, 1976), essentiellement au nord de l'accident majeur sud-atlasique (CHOUBERT & MARCAIS, 1956). La Meseta marocaine est un domaine où le substratum hercynien est plissé, avec une couverture méso-cénozoïque restée subtabulaire et peu affectée par le cycle alpin. Le district des Rehamna, qui se situe à environ 80 km au nord de Marrakech et à 150 km au sud de Casablanca, a depuis longtemps fait l'objet d'une exploitation minière importante en Sn, W, Be, Cu, Mo (CHAURIS & HUVELIN, 1964).

Ces minéralisations d'origine pneumatolytique et hydrothermale, hercynienne à post-hercynienne sont liées essentiellement aux intrusions magmatiques tardi-hercyniennes (JENNY, 1974).

CADRE GEOLOGIQUE

Les terrains du secteur étudié sont constitués pour l'essentiel de schistes et de micaschistes. Ils présentent une grande monotonie de faciès pétrographiques, avec parfois quelques intercalations de niveaux amphibolitiques, quartzitiques et carbonatés.

Les différentes formations du secteur sont essentiellement d'âge cambro-ordovicien, dévonien et carbonifère (Fig. 2).

En ce qui concerne les caractéristiques structurales, une première description des structures majeures hercyniennes de la Meseta marocaine méridionale a été faite par GIGOUT (1951) : elles sont orientées globalement NNE–SSW.

Une synthèse des principaux travaux sur le massif hercynien des Rehamna (PIQUE, 1972; JENNY, 1974; HOEPFFNER, 1974, et MICHARD, 1982) fait ressortir trois grands domaines structuraux (Fig. 2): les Rehamna occidentaux, les Rehamna centraux, et les Rehamna orientaux.

La couverture paléozoïque de ces trois domaines est affectée par une déformation hercynienne polyphasée avec superposition de deux phases principales de déformation ductiles et synmétamorphes D₁ et D₂, qui se traduit par une importante structuration planaire et linéaire. Une phase tardive D₃ cassante et essentiellement rétromorphique succède aux phases précédentes. L'intensité de la déformation et du métamorphisme varie d'un domaine structural à l'autre. Ces déformations hercyniennes sont post-Viséen supérieur, âge du dernier terrain impliqué dans la déformation, et anté-Autunien, qui correspond à l'âge de mise en place tardive du granite de Sebt Brikiine, 272 ± 5 Ma (TISSERANT, 1972) par rapport à ces déformations.

Les Rehamna occidentaux

Le domaine des Rehamna occidentaux est situé à l'ouest de la Faille médiane (Fig. 2). Il est constitué de terrains cambriens à ordoviciens, et caractérisé par une zone faillée réactivée en décrochement dextre (PIQUE & *al.*, 1982). Tectoniquement, il est affecté par une déformation hercynienne polyphasée relativement modeste, et un métamorphisme de degré faible anchi- à épizonal. Le gradient déformation-métamorphisme s'accentue d'ouest en est. Une première phase de déformation D₁, essentiellement plicative, donne naissance à des plis synschisteux P₁ d'extension régionale. Ces plis sont subméridiens (N05 à N20), avec un plongement de quelques degrés vers le nord ou le nord-est (PIQUE, 1972)

Une seconde phase de déformation, D_2 , est responsable de failles inverses à l'ouest et d'une schistosité de crénulation S_2 à l'est.

Figure 2 : Carte de répartition des formations paléozoïques dans le massif des Rehamna et situation du secteur étudié. Failles : 1, Haut Tarfa ; 2, Médiane ; 3, Ouled Zedness ; 4, Kibane ; 5, Aïn Mellah ; 6, Jbel Kharrou ; S, Skhour Rehamna ; Mba, Mechraa Ben Abbou ; DG, Draa Guessa ; BZ, Baten Zita ; JB, Jorf el Beida (d'après MICHARD, 1982 et CORSINI, 1988).

Les Rehamna centraux

Ce domaine, qui correspond à la zone des Skhours, constitue l'essentiel du secteur étudié. Il est délimité à l'est par la zone de cisaillement des Ouled Zedness et à l'ouest par la Faille médiane à jeu décrochant syn- à post-métamorphique (MICHARD, 1982), ou à caractère de faille subverticale tardive (CORNEE, 1982).

Les terrains constituant ce domaine sont d'âge précambrien (BERNARDIN & *al.*, 1988; CORSINI & *al.*, 1988) à dévonien (PIQUE, 1972; JENNY, 1974; MICHARD, 1982). Le substratum précambrien correspond au dôme orthogneissique de Sidi Ali, dont le protolite est de nature rhyolitique à ignimbritique (CORSINI & *al.*, 1988; EL MAHI, 1991).

La couverture paléozoïque est affectée par une déformation polyphasée ; ainsi, trois épisodes tectono-métamorphiques ont individualisé et mis en place les grands ensembles structuraux des Rehamna centraux (JENNY, 1974 ; PIQUE & *al.*, 1982 ; CORSINI, 1988 ; EL MAHI, 1991):

– Un épisode de déformation D_1 , ductile et synmétamorphe, caractérisé par des plis P_1 isoclinaux et synschisteux, de direction moyenne N30-40, avec un plongement axial de 5° à 10° vers

le NE ; ils sont plus ou moins déversés au NW. A cet épisode est associé un métamorphisme essentiellement épizonal.

– Un épisode de déformation D_2 , ductile et synmétamorphe également, affecte les plis nés au cours de D_1 . Cet épisode est marqué par des glissements et des cisaillements, soit parallèlement aux plans axiaux de P_1 , soit en réutilisant la S_{0-1} et en créant une nouvelle foliation S_{1-2} (= S_2) en plissant S_1 . Au niveau de l'affleurement, la déformation D_2 est marquée par la dilacération des niveaux compétents conduisant à un morcellement des bancs gréseux et quartzitiques. Par contre, à l'échelle de la lame mince, les glissements et cisaillements de D_2 se traduisent par la formation de microplis parfois dilacérés avec des charnières séparées et des flancs laminés en amandes.

- Un métamorphisme mésozonal à cristallisation de staurotide et de disthène est syn- à post-cinématique D_2 .

- Un épisode de déformation D_3 tardif, est attribué au rejeu des principaux accidents subméridiens en décrochements dextres (JENNY, 1974) ou en failles normales (EL MAHI, 1991). Cette phase est essentiellement cassante et rétromorphique.

Les Rehamna orientaux

Ce domaine est séparé des Rehamna centraux par la zone de cisaillement ductile des Ouled Zedness qui fait partie de la Zone de cisaillement de la Meseta occidentale (Z.C.M.O.).

Les Rehamna orientaux sont également affectés par une déformation hercynienne polyphasée, qui se manifeste par les deux phases principales de déformation ductiles et syn-métamorphes D₁ et D₂ avec des plis P₁ et P₂ associés à une schistosité de crénulation S₂. Localement, la création de couloirs de cisaillement entraîne la transposition totale de S₀₋₁ dans S₂. Un étirement généralisé parallèle aux axes de plis traduit le transport de matière qui s'effectue globalement vers l'ouest avec une décrochante dextre. composante Un métamorphisme mésozonal qui accompagne la déformation cisaillante D₂ est caractérisé par une paragenèse de chloritoïde et de grenat. La staurotide se développe tardivement par rapport à D₂.

L'âge des terrains impliqués dans la déformation hercynienne s'échelonne du Cambrien au Viséen. Des structures tardives sont marquées par des plis crénulants avec une schistosité S_3 associés à des décrochements dextres NW-SE (phase D_3) et des chevauchements vers le SW du Jbel Kharrou (phase D_4). Les deux dernières phases sont essentiellement rétromorphiques (HOEPFFNER, 1974).

En conclusion, l'ensemble du secteur est caractérisé par une série lithologique relativement monotone, et par une déformation hercynienne polyphasée avec deux phases majeures synmétamorphes D_1 , D_2 et auxquelles succède une phase tardi-hercynienne D_3 . Les structures fondamentales liées aux phases majeures D_1 et D_2 donnent aux roches de la région un débit planaire régulier où les charnières de plis ne sont que rarement observables.

L'influence de la phase D_2 à caractère cisaillant est observable partout, mais à des degrés divers, fonction d'une part de la lithologie, et d'autre part de zones privilégiées où se concentre le cisaillement. Le caractère dominant est la superposition des niveaux lithologiques S_0 à la foliation métamorphique principale S_{0-1} , c'est-à-dire une transposition partielle ou totale de S_0 dans la foliation S_{0-1} .

CARACTERISATION DU METAMORPHISME HERCYNIEN

Le présent travail est une étude pétrologique du métamorphisme dans la zone centrale des Rehamna. Il consiste à établir avec le plus de précision possible, à l'échelle de l'affleurement et de la lame mince, les relations entre les paragenèses minérales et les déformations, afin de dégager les relations chronologiques entre le métamorphisme et les déformations régionales.

L'estimation qualitative des conditions physiques de la déformation, notamment de la pression et de la température (P, T) reste un objectif principal dans toute étude tectono-métamorphique. Elle sera abordée d'une manière préliminaire dans ce travail.

Des gradients métamorphiques E-W et N-S, parallèles aux gradients de déformation, ont été mis en évidence pour la première fois dans les Rehamna par GIGOUT (1951). L'association étroite entre le métamorphisme régional et la déformation hercynienne a été établie par MICHARD (1968 a, b) : des porphyroblastes de grenat, de staurotide, de chloritoïde et de disthène, sont développés en climat syn-tectonique à tardi-tectonique. Par la suite, PIQUE (1972), HOEPFFNER (1974), JENNY (1974), BOUYBAOUENE (1984) et EL MAHI (1991) ont réalisé la première étude zonéographique dans les Rehamna.

RELATION CRISTALLOGENESE-DEFORMATION

L'étude des relations entre le métamorphisme et la déformation est abordée en tenant compte d'une analyse microscopique détaillée de toutes les formes de cristallisation, recristallisation, porphy-roblastèse, et de leurs relations microtexturales avec foliation métamorphique (Tabl. I).

La biotite

L'étude des relations microtexturales des biotites avec les différentes schistosités permet de distinguer trois types :

– Une première biotite précoce, de petite taille et de couleur vert brun, allongée parallèlement à la schistosité principale S_{0-1} , matérialisant ainsi la fabrique minérale de cette foliation en compagnie de la muscovite et du quartz. Les sections de ces biotites présentent souvent une extinction non uniforme en lumière polarisée et analysée, ce qui est expliqué par leur déformation intracristalline ; ces biotites, parfois sous forme de reliques au cœur

Métamorphisme	(rétromorphose) M1 → M2									
Déformations	D	1 (SO-1)	D	D3					
	Précoce	Syn	post	précoce	syn	tardif				
- Chlorite										
- Biotite	·									
- Quartz										
- Grenat										
- Staurotide										
- Chloritoïde										
- Disthène										
- Sillimanite										
- Andalousite										
- Cordiérite										
- Ilménite										
- Graphite										
- Muscovite/séricite										
- Tourmaline										

Tableau I : Relation cristallogenèse-déformation

des grenats, constitueraient les traces des premiers stades d'un métamorphisme prograde.

- Une deuxième biotite cristallise sous forme de porphyroblastes subautomorphes, de couleur brune à rouge brun, et dont le clivage est fortement oblique par rapport à la trace de la schistosité principale ; ces biotites sont généralement moulées par la schistosité S₁₋₂ et montrent plusieurs structures de déformation : glissements et cisaillements intracristallins le long des plans de clivage (001); formation de zones abritées aux extrémités des blastes ; des microstructures internes sigmoïdes sous forme d'inclusions de quartz et des traînées de matière graphiteuse déterminant une schistosité interne (Si) qui se prolonge sans déviation de l'intérieur vers l'extérieur du minéral. Tous ces caractères indiquent que les blastes de biotite sont manifestement syncinématiques de la foliation S_{1-2} . Ces biotites peuvent être partiellement chloritisées.

- Enfin, des biotites tardives, statiques et sécantes sur la foliation S₁₋₂, parfois associées à l'andalousite, ce qui permet de lier leur croissance au métamorphisme thermique. La relation entre les porphyroblastes de biotite et les microstructures de déformation permet de suggérer que la croissance de la biotite a été largement étalée dans le temps, et qu'elle s'est effectuée durant tous les stades tectonométamorphiques.

Le grenat

Il s'exprime généralement sous forme de cristaux automorphes (1 mm à 1,5 cm) ou sous forme de poeciloblastes contenant des inclusions de quartz et de minéraux opaques, dont l'allongement et l'alignement définissent une schistosité interne Si. Le grenat se présente sous trois formes différentes :

- Un grenat $G_{1},\ moulé \ par \ la \ schistosité \ S_{0\text{-}1}$ et ne montrant pas de microstructures internes.

– Un grenat G_2 de grande taille (1 mm à 1,5 cm) qui peut parfois présenter un aspect hétérogène : un cœur montrant des microstructures internes, parfois déchiqueté, et une périphérie homogène (Pl. I, photo 2). La trace sigmoïde des inclusions et la continuité de la schistosité interne (Si) – schistosité externe (Se) dans certains cristaux implique la contemporanéité de la croissance du grenat et l'acquisition de la schistosité S_{1-2} (les cristaux automorphes jouent le rôle d'objets plus compétents que la matrice pendant la formation de S_{1-2}).

- Un grenat G_3 , toujours de petite taille manifestement tardif, se développant soit au niveau des zones abritées, soit à travers la trame schisteuse. Il est dépourvu d'inclusions sigmoïdes et d'altération.

Le chloritoïde

Il apparaît localement dans les métapélites du massif des Rehamna, et se présente sous forme de tablettes millimétriques, voire centimétriques (région de Rouinet). On distingue trois générations : – Le chloritoïde 1, qui apparaît d'une manière relativement précoce par rapport au paroxysme synschisteux. Il est moulé par la schistosité de la matrice et montre quelques traces de déformation (une torsion). Des zones abritées se développent à ses extrémités.

- Le chloritoïde 2 se présente généralement sous la forme de porphyroblastes tabulaires supérieurs à 1 mm, souvent à mâcle polysynthétique. Les cristaux sont toujours isolés les uns des autres. Ce chloritoïde présente une certaine contemporanéité avec le paroxysme synschisteux, renfermant des microstructures internes sigmoïdes, et présentant des zones abritées dissymétriques, témoignant ainsi de leur rotation syncinématique au cours de la déformation progressive.

- Le chloritoïde 3, sous forme de petits cristaux qui ne sont pas contournés par la schistosité. La disposition en rosettes et l'obliquité à travers la schistosité de crénulation établissent bien leur caractère tardif à post-cinématique. Il peut se développer essentiellement au détriment de l'andalousite dans l'auréole de contact (Pl. II, photo 7).

En conclusion, la cristallogenèse du chloritoïde semble être assez étalée dans le temps : elle est précoce par rapport à la schistogenèse (chloritoïde 1) mais elle s'est poursuivie durant celle-ci (chloritoïde 2). Une cristallisation tardive et statique (chloritoïde 3) est manifestement liée à la mise en place des granitoïdes (EL MAHI, 1991).

La staurotide

Dans le secteur d'étude, le métamorphisme s'exprime fréquemment par les recristallisations de la phase staurotide, la plupart du temps sous forme de phénoblastes. On distingue trois générations:

- La staurotide 1 : les cristaux sont allongés

parallèlement à la foliation métamorphique S_{0-1} matérialisée par l'aplatissement des grains de quartz et des phyllites. Les sections sont limpides et ne présentent pas d'inclusions internes. Cette staurotide est parfois associée au grenat 1 qui présente les mêmes caractères; ces deux minéraux sont probablement précoces et liés à la première phase de déformation D_1 qui correspond à l'épisode de métamorphisme M_1 .

– la staurotide 2 se présente généralement sous la forme de phénoblastes automorphes à contours géométriques bien nets. Toutes les sections fossilisent des microstructures internes qui sont soit rectilignes, soit courbes ou sigmoïdes (Pl. I, photo 3). La présence de zones abritées enrichies en quartz autour de ces blastes de staurotide et d'inclusions sigmoïdes internes est caractéristique d'un minéral syntectonique qui a enregistré les différentes étapes de la formation de la foliation externe Se (=S₁₋₂).

- La staurotide 3 se présente sous la forme de prismes automorphes à contours nets et parfois sous forme de poeciloblastes. Sa croissance se fait statiquement et sans orientation préférentielle sur la foliation de la matrice S_{1-2} (Pl. II, photo 6), ce qui montre son caractère tardif à post-cinématique par rapport à la phase D_2 .

En définitive, la cristallisation de la phase staurotide a débuté dans les stades précoces de S_{0-1} . Elle a continué d'une manière syntectonique dans l'intervalle [S_{0-1} , S_{1-2}], et tardivement par rapport à la structuration de la foliation régionale S_{1-2} .

Le disthène

Ce silicate d'alumine présente un caractère limité et ponctuel dans l'ensemble métamorphique des Rehamna. Il est fréquent dans des veines ou des filons de quartz, et se présente en grands cristaux groupés en gerbes centimétriques (jusqu'à 8 cm), de couleur bleu clair avec un éclat vitreux nacré sur les plans de clivage. Il est presque toujours associé à de grandes paillettes de muscovite. Il apparaît aussi localement dans des affleurements de roches silicoalumineuses relativement tendres et altérées, mais à caractère toujours phylliteux très accusé. Dans ces métapélites, le disthène cristallise soit sous forme de cristaux en tablettes allongées dans la foliation S_{1-2} , soit sous forme de blastes à contours bien nets, recoupant statiquement la foliation S1-2, qui est souvent fossilisée sous forme de schistosité interne à l'intérieur des porphyroblastes de ce minéral (Pl. II, photo 5). Ceci confirme la cristallisation tardive à

post-cinématique de la phénoblastèse du disthène.

Il est à remarquer que la staurotide tardive cristallise en même temps que le disthène tardif avec qui elle entre parfois en contact franc de syncristallisation. Leur caractère tardif se traduit par leur disposition statique par rapport à la schistosité S_{1-2} .

De rares disthènes, parfois associés à des staurotides, subsistent à l'état de reliques blindées dans des andalousites thermiques (Pl. I, photo 4), ce qui est un argument en faveur de la mise en place tardive des intrusions magmatiques par rapport à l'évolution tectono-métamorphique des Rehamna.

L'andalousite

A proximité des intrusions magmatiques, une porphyroblastèse d'andalousite caractérise le métamorphisme thermique qui leur est associé. Le développement tardif des blastes d'andalousite se traduit par leur disposition sécante par rapport à la foliation S_{1-2} .

La cordiérite

Elle se présente généralement sous forme de nodules avec des microstructures internes correspondant probablement à une schistosité antérieure à leur cristallisation. La plupart du temps, elles sont totalement rétromorphosées en produits micacés. La cordiérite cristallise aussi sous forme de poeciloblastes statiques sur la schistosité S_{1-2} .

En résumé, l'analyse des rapports cristallisation – déformation des différents minéraux permet de mettre en évidence deux épisodes synmétamorphes majeurs D1 et D2 qui correspondent à la superposition de déformations progressives acquises au cours d'un continuum dans le temps. En effet, la phase D₂ semble être liée à la phase D₁ dont elle représente probablement une évolution temporelle, car elle montre une certaine similitude de style et d'orientation. Ces deux événements tectonométamorphiques correspondent probablement aux stades compressifs aboutissant à l'épaississement crustal du domaine orogénique hercynien. Tardivement par rapport à D₂ est amorcée une déformation en extension d'ampleur régionale, à laquelle est associée la montée des magmas (EL MAHI, 1999). Cette phase est relayée par une phase D₃, rétromorphique, et l'évolution tardive enregistrée peut correspondre à un amincissement crustal lié au retour à l'équilibre de la croûte épaissie lors de collision intracontinentale hercynienne.

En conclusion, l'étude des relations déformationmétamorphisme (Tabl. I) met en évidence le caractère essentiellement syn- à tardi-cinématique (Pl. I et II) de la blastogenèse par rapport aux phases hercyniennes majeures D₁-D₂. La cristallisation tardive des blastes de disthène et de staurotide et leur disposition équante par rapport à la foliation principale S₁₋₂ (Pl. I et II) est liée à une phase tardihercynienne, probablement péné-contemporaine de la mise en place des granites tardi-orogéniques dans le massif hercynien des Rehamna (EL MAHI, 1999). Ces blastes tardifs, fossilisent la schistosité S_{1-2} , avec continuité parfaite entre la schistosité interne des minéraux (S₁₋₂)_i et la schistosité externe de la matrice (S1-2)e. Ces minéraux sont dépourvus de zones abritées synchrones de S₁₋₂.

LE METAMORPHISME THERMIQUE

L'examen des relations microtexturales de la foliation métamorphique et des minéraux considérés comme ayant une origine "thermique", c'est à dire, liés aux intrusions magmatiques affleurantes ou subaffleurantes, montre que ces minéraux présentent un caractère franchement tardi- à post-tectonique : ils sont obliques par rapport à la foliation S_{1-2} . Il s'agit essentiellement des blastes de biotite, de cordiérite, d'andalousite, et éventuellement de chloritoïde et de staurotide (Pl. I et II).

GEOCHIMIE MINERALE

Une soixantaine d'analyses chimiques ont été effectuées à la microsonde électronique CAMEBAX de l'Université Pierre et Marie Curie (Paris VI) afin de caractériser l'évolution chimique et minéralogique des paragenèses minérales en liaison avec l'intensité du métamorphisme.

Un certain nombre d'analyses chimiques ont été choisies pour leur qualité (cf. tableaux d'analyses en annexe) et qui ont porté sur quelques minéraux susceptibles d'être utilisés dans l'étude géothermobarométrique: en l'occurrence les grenats, les biotites, et les staurotides dans les métapélites ; les amphiboles et les plagioclases dans les métabasites. Les analyses utilisés ont été effectuées sur plusieurs cristaux d'une même espèce minérale.

ZONATION DES GRENATS

Il a été établi d'après les travaux de plusieurs auteurs (DE BETHUNE & *al.* 1965, 1968, 1975; ATHERTON & EDMUNDS, 1966; KURAT &

Figure 3 : Grenat des micaschistes de Sidi Ben Azzouz : profils de distribution des éléments Alm, Sp, Gr, Py, Xfe.

SCHARBERT, 1972 ; LOPEZ RUIZ & *al.*, 1975 ; LOPEZ RUIZ, 1976 ; PETRAKAKIS, 1986) que les grenats des roches métamorphiques peuvent présenter trois types de zonations : une zonation normale, une zonation normale avec bordures enrichies en Mn, et une zonation inverse. Ces différentes zonations sont essentiellement basées sur la distribution de Mn, car cet élément est probablement le plus sensible aux variations des conditions de pression et de température.

Dans l'ensemble, les porphyroblastes de grenat associés au régime tectonique compressif (syn- D_1 et syn- D_2), ayant affecté la série métapélitique et métabasique du secteur, montrent clairement une zonation chimique du centre vers la bordure des cristaux.

Les types de grenat analysés à la microsonde sont des grenats (Tabl. II et III) qui ont enregistré les événements tectonométamorphiques sous forme de microstructures internes.

Des analyses quantitatives, ainsi que les profils de distribution de certains éléments, en particulier Mn, Fe, Mg et Ca, ont été réalisés selon des traversées, allant du cœur vers la périphérie des minéraux.

Dans les grenats analysés (Fig. 3), les profils de

distribution montrent clairement une zonation normale, caractérisée par une décroissance de la teneur en spessartine du centre vers la bordure du minéral, accompagnée d'une augmentation parallèle en almandin et en pyrope. Systématiquement, les grenats avec une zonation normale, caractérisent les roches ayant subi un métamorphisme prograde de faible à moyen degré (TRACY & *al.*, 1976; YARDLEY, 1977).

GEOCHIMIE DES AMPHIBOLES

Les amphiboles analysées appartiennent à la série des métabasites intercalées dans les micaschistes (série de Lalla Tittaf). Ces niveaux basiques sont aisément identifiables par leur couleur bleuverdâtre, due à la présence de chlorite, d'épidote et d'amphiboles sodi-calciques. L'étude pétrologique met en évidence quatre types de roches : (i) les amphibolites rubanées ; (ii) les amphibolites massives à aspect vert bouteille ; (iii) des amphibolites à aspect noirâtre à grisâtre qui sont relativement riches en grenat ; (iv) un dernier type d'amphibolites à aspect œillé.

La paragenèse minérale qui correspond à ces roches est généralement : hornblende verte + actinote + chlorite + épidote + plagioclase + grenat +/– sphène. Ces métabasites sont caractérisées par deux types d'amphiboles: des actinotes incolores à légèrement colorées en bleu-vert et des hornblendes colorées en bleu-vert à vert. Dans l'ensemble, les amphiboles analysées sont pauvres en MnO, TiO₂ et K₂O, et présentent des variations en FeO, MgO et Na₂O, alors que CaO varie très peu et cela est dû au fait qu'à tout moment le milieu est tamponné en Ca par le sphène et/ou le plagioclase (THIEBLEMONT, & *al.*, 1988).

Certaines amphiboles sont plus ou moins zonées ; pour le calcul de leur formules structurales, l'équilibre des charges a été toujours respecté:

l'équilibre des charges a été toujours respecté: (Na, K)_A + Al^{VI}(M₁) + Fe³⁺ – 2Ti – Al^{VI} (T₁) + Na M₄

D'après la classification de LEAKE (1978), il s'agit essentiellement d'amphiboles calciques (Fig. 4), correspondant plus précisément à des hornblendes actinolitiques, à des magnésio-hornblendes, à des ferro-hornblendes, et à des hornblendes tchermakitiques.

CONDITIONS THERMOBAROMETRIQUES DU METAMORPHISME

Les estimations quantitatives de la pression et de la température d'un épisode tectonométamorphique sont déterminées par application des méthodes

Figure 4 : Classification des amphiboles d'après LEAKE (1978) pour (Na+K)A ≤ 0.50 ; Ti ≤ 0.50 ; • : amphiboles analysées des métabasites intercalées dans les micashistes.

géothermobarométriques qui reposent essentiellement sur la notion d'équilibre et celle de réactions interminérales.

Au cours d'une réaction minérale s'effectue un échange de matière ou d'énergie entre les différentes système : ainsi parties d'un les calculs thermométriques ou barométriques exploitent la dépendance thermique ou barométrique de la distribution des éléments entre les phases connues (solides ou liquides). Plusieurs géothermomètres ou géobaromètres minéralogiques sont connus actuellement et leur utilisation nécessite l'analyse à la microsonde électronique.

Les résultats obtenus par les thermomètres : grenat-biotite (GOLDMAN & ALBEE, 1977 ; FERRY & SPEAR, 1978 ; HODGES & SPEAR, 1982 ; PERCHUK & LAVRENT'EVA, 1981 ; SPEAR, 1984, 1991, 1993) dans les métapélites, amphiboleplagioclase dans les métabasites ; et par les baromètres GRIPS (grenat-rutile-ilmeniteplagioclase-quartz) de BOHLEN & LIOTTA (1986), permettent de proposer d'une manière globale, le chemin P-T-t et l'évolution tectono-métamorphique suivie par les roches métamorphiques du secteur (Fig. 5).

On distingue deux épisodes tectonométamorphiques dans l'ensemble du secteur : un épisode M_1 prograde, contemporain du plissement et de l'épaississement crustal engendré par la tectonique compressive, et un épisode M_2 rétrograde, associé à l'amincissement crustal (tectonique extensive postorogénique et exhumation des unités métamorphiques). Ce découpage en épisodes distincts est en fait artificiel car il est pour l'instant impossible de préciser la longueur des intervalles de temps séparant les différents épisodes de cristallisation. Il est plus rigoureux de parler d'un continuum métamorphique dont les pulsations, d'abord progrades, puis rétrogrades, ponctuent un continuum de déformation.

LE METAMORPHISME DANS LA ZONE DE CISAILLEMENT DUCTILE DE LA MESETA OCCIDENTALE (Z.C.M.O.)

La zone de cisaillement de la Meseta occidentale correspond à une fracture crustale, constituée dans

Figure 5: Chemin P–T–t estimé de l'évolution tectonométamorphique de la région.

son ensemble par la bande de cisaillement située entre la Faille médiane à l'ouest et l'accident des Ouled Zedness à l'est.

Tectoniquement, elle apparaît comme un couloir de cisaillement ductile, synmétamorphique, de direction N30, à faible pendage vers l'est. Elle est subparallèle sensiblement aux structures hercyniennes régionales NNE-SSW, et constitue un tronçon de la mégazone faillée de l'Ouest marocain, large de quelques kilomètres, dans lequel se concentre le métamorphisme et la déformation (PIQUE & MICHARD, 1989; CORSINI, 1988; EL MAHI, 1991). C'est probablement dans cette zone, en profondeur, que s'est produite une fusion partielle des métasediments à l'origine des intrusions magmatiques fréquentes dans le secteur (EL MAHI, 1991). La trace actuelle du cisaillement ductile majeur correspond à un système d'accidents à jeu complexe de décrochements dextres et des déplacements tangentiels vers l'ouest et le sud ouest (MICHARD, 1982).

Il a été proposé que cette bande de cisaillement

correspond à une ancienne faille normale d'amincissement crustal avec un faible pendage vers l'est, héritée de l'épisode d'ouverture du bassin carbonifère dans l'ouest marocain (Fig. 6). Elle est située à la limite occidentale de ce bassin (PIQUE & *al.*, 1982).

Pour PIQUE & MICHARD (1989), les accidents majeurs de la chaîne hercynienne, dont fait partie la Z.C.M.O., auraient résulté d'un décollement ductile profond au niveau du socle avec un faible pendage vers le SE se redressant au niveau de la couverture.

En effet, la Z.C.M.O. pourrait correspondre à une ancienne faille (ou un réseau de failles) ayant commandé l'ouverture du bassin carbonifère, et remobilisée(s) pendant la phase compressive hercynienne majeure. Cette zone de cisaillement ductile synmétamorphe est caractérisée par une abondance d'exsudats quartzeux sous forme de filons ou veines siliceuses, et aussi par la présence de miroirs striés à quartz, pyrite et tourmaline sur les bancs compétents de quartzites et sur les filons siliceux.

Figure 6 : Carte structurale du Maroc hercynien.

Figure 7 : Modèle d'évolution tectonométamorphique de la région.

Dans ces zones de cisaillement on peut trouver localement le disthène, soit dans les veines siliceuses, soit associé aux métapélites. Ainsi, dans l'auréole de contact d'une intrusion leucogranitique (granite de Bir El Gorda) qui se trouve à l'emplacement de ce couloir de cisaillement (Z.C.M.O.), il y a mise en évidence de l'interaction entre cisaillement ductile synmétamorphe et mise en place d'une intrusion magmatique : des reliques de disthène, blindées dans des andalousites thermiques peuvent être observées microscopiquement (Pl. I). Ceci confirme le caractère tardi-tectonique de la mise en place des intrusions magmatiques, d'une part, et d'autre part, la cristallisation du disthène est due probablement à une composante de cisaillement, associée à des pressions de fluides, et non pas à la pression de charge (EL MAHI, 1991, 1999).

CONCLUSION

L'étude entreprise dans le secteur représente un exemple de contexte géologique où il y a

interaction entre évolution tectono-métamorphique et mise en place des intrusions leucogranitiques dans une zone de cisaillement intralithosphérique, qui est la zone de cisaillement de la Meseta occidentale. L'étude structurale complétée par une analyse détaillée des microstructures et des relations cristallogenèse-déformation, ont permis de reconnaître trois phases de déformation, (D_1, D_2, D_3) durant lesquelles se sont opérés deux épisodes tectonothermaux : un épisode M_1 prograde de type barrowien et un autre, M_2 rétrograde (faciès schistes verts).

La première phase de déformation D_1 est essentiellement plicative et synschisteuse ; elle est responsable des structures régionales subméridiennes, et d'une porphyroblastèse de staurotide et de grenat, moulés par la foliation S_{0-1} . La deuxième phase de déformation D_2 relaye D_1 ; elle est caractérisée par la création d'ombres de pression et de microstructures internes sigmoïdes dans les blastes de staurotide, de grenat, et de chloritoïde, qui sont moulés par la foliation S_{1-2} . L'épaississement crustal du massif hercynien des Rehamna, lié à une tectonique compressive, est engendré essentiellement par la phase de déformation D_1 et une majeure partie de la déformation D_2 . A ce régime compressif s'est superposé un régime extensif durant les stades tardi- D_2 et une partie de D_3 .

La tectonique extensive s'est amorcée avec un pic thermique régional établi dans la bande de cisaillement ductile (Z.C.M.O.) à staurotide et disthène, et qui coïncide avec l'injection de fluides leucogranitiques et de solutions minéralisatrices (EL MAHI, 1999).

Pour conclure, on peut envisager que l'évolution tectonothermale dans le massif hercynien des Rehamna (Fig. 7) est dépendante de ces zones de

REFERENCES BIBLIOGRAPHIQUES

- ATHERTON, M.P. & EDMUNDS, W.M. (1966). An electron microprobe study of some zoned garnets from metamorphic rocks. *Earth Planet. Sci. Lett.*, 1, pp. 185-193.
- BERNARDIN, C.; CORNEE, J.J.; CORSINI, M.; MAYOL, S.; MULLER, J. & TAYEBI, M. (1988). Variations d'épaisseur du Cambrien moyen en Meseta marocaine occidentale: signification géodynamique des données de surface et de subsurface. *Can. J. Earth. Sci.*, 25, pp. 2104-2117.
- BOHLEN, S.R. & LIOTTA, J.J. (1986). A barometer for garnet amphibolites and garnet granulites. *J. Petr.*, 27, pp. 1025-1034.
- BOUYBAOUENE, M.L. (1984). Le métamorphisme de contact du granite des Rehamna. Doctorat de 3^{ème} Cycle, Univ. Mohammed V, Fac. Sci. Rabat. 147 p.
- CHAURIS, L. & HUVELIN P. (1964). Présence de béryl dans le massif des Rehamna (Maroc). *C.R. somm. Soc. géol. Fr.*, pp. 325-326.
- CHOUBERT, G. & MARÇAIS, R. (1956). L'accident majeur de l'Anti-Atlas. *C.R. Acad. Sci. Paris*, 221, pp. 249-251.
- CORNEE, J.J. (1982). Etude lithostratigraphique et tectonométamorphique des Rehamna sud-orientales. Plissements et nappes. Contribution à la connaissance de la chaîne hercynienne en Meseta marocaine. *Trav. Lab. Sci. Terre*, Univ. Saint Jérôme, Marseille, sér. B, 20, 175 p.
- CORSINI, M. (1988). Relation entre la marge du bassin cambrien et la cinématique hercynienne de la Meseta occidentale du Maroc. Thèse Doctorat, Univ. Aix-Marseille III, 152 p.
- CORSINI, M. ; MULLER, J. ; CORNEE, J.J. & DIOT, H. (1988). Découverte de la série basale du Cambrien et de son substratum dans les Rehamna centraux, haut-fond au Cambrien (Meseta marocaine). Prémices de l'orogenèse hercynienne. C.R. Acad. Sci. Paris, 306, sér. II, pp.63-68.
- DANIEL, J.M. & JOLIVET, L. (1995). Détachements et mise en place de plutons : l'île d'Elbe (mer

cisaillement ductile à mouvement synmétamorphe, avec un paroxysme thermique régional.

Le serrage hercynien qui est contrôlé par un régime tectonique compressif avant utilisé la Z.C.M.O. (LAGARDE & MICHARD, 1986; EL MAHI, 1991; PIQUE, 1994) est suivi ensuite par un amincissement crustal, lié à une extension tardi- à post-orogénique réactivant probablement les cisaillements compressifs, mais en failles normales ductiles avec une composante dextre (EL MAHI, 1991). Ces failles pourraient correspondre en profondeur à des niveaux de détachement comparables à ceux associés aux dômes gneissiques ou noyaux métamorphiques profonds (MALAVIEILLE, 1987; SANDIFORD, 1989; DANIEL & JOLIVET, 1995; GAUTIER & BRUN, 1994).

RENCES BIBLIOGRAFHIQUES

Tyrrhénienne). Bull. Soc. géol. Fr., 4.

- DE BETHUNE, P.; GOOSENS, P. & BERGER, P. (1965). Emploi des grenats zonaires comme indicateur du degré de métamorphisme. *C.R. Acad. Sci. Paris*, 260, pp. 6946-6949.
- DE BETHUNE, P.; LADURON, D.; MARTIN, H. & THEUNISSEN, K. (1968). Grenats zonés de la zone du Mont Rose (Valle Anzasea, prov. de Novara, Italie). *Bull. Suisse Min. Pétr.*, 48, pp. 437-454.
- DE BETHUNE, P.; LADURON, D. & BOSQUET, J. (1975). Diffusion processes in resorbed garnets. *Contrib. Mineral. Petrol.*, 50, pp. 197-204.
- EL MAHI, B. (1991). Exemple d'interaction entre métamorphisme et mise en place de leucogranites dans une zone de cisaillement intralithosphérique : la zone de cisaillement de la Meseta occidentale (Z.C.M.O). Thèse de 3^{ème} Cycle. Univ. Mohammed V, Fac. Sci. Rabat, 176 p.
- EL MAHI, B. (1995). L'évolution structurale et métamorphique de la zone des Rehamna Centraux (Maroc). *Réun. extraord. Soc. géol. Fr.*, Marrakech, 25-28 avril 1995, p. 42.
- EL MAHI, B. (1999). Les veines synmétamorphiques de quartz à disthène: témoins d'un métamorphisme associé à l'amincissement post-orogénique (Meseta occidentale, Maroc). *Premier coll. natl. magmatisme, métamorphisme et minéralisations associées*. Meknès, 12-14 novembre 1999, p. 48.
- FERRY, J.M. & SPEAR, F.S. (1978). Experimental calibration of the partitionning of the Fe and Mg between biotite and grenat. *Contrib. Mineral. Petrol.* 66, pp. 113-117.
- GAUTIER, P. & BRUN, J.P. (1994). Crustal-scale geometry and kinematics of late-orogenic extension in the central Aegean (Cyclades and Evvia Island). *Tectonphysics*, 238, pp. 399-424.
- GIGOUT, M. (1951). Etudes géologiques sur la Meseta marocaine occidentale. *Notes & Mém. Serv. géol. Maroc*, 86, 507 p.

- GOLDMAN, D.S. & ALBEE, A.L. (1977). Correlation of Mg/Fe partitioning between garnet and biotite with O¹⁸/O¹⁶ partitioning between quartz and magnetite. *Am. J. Sci.*, 277, pp. 750-761.
- HODGES, K.V. & SPEAR, F.S. (1982). Geothermometry, geobarometry and the Al₂SiO₅ triple point at Mt. Moosilauke, New Hampshire. *Am. Mineral.*, 67, pp. 1118-1134.
- HOEPFFNER, Ch. (1974). Contribution à la géologie structurale des Rehamna (Meseta marocaine méridionale). Thèse de 3^{ème} Cycle, Univ. Louis Pasteur, Strasbourg, 92 p.
- JENNY, P. (1974). Contribution à la géologie structurale des Rehamna (Meseta marocaine meridionale). Thèse de 3^{ème} Cycle, Univ. Louis Pasteur de Strasbourg, 120 p.
- KURAT, G. & SHARBERT, H.G. (1972). Compositional zoning in garnets from granulites facies rocks of the moldanubian zone, Bohemian massif of lower Austria. *Earth Planet. Sci. Letters*, 16, pp. 379-387.
- LAGARDE, J.L. & MICHARD, A. (1986). Stretching normal to the regional thrust displacement in a thrustwrench shear zone, Rehamna Massif, Morocco. J. Struct. Geol., 8, pp. 483-492.
- LEAKE, B.E. (1978). Nomenclature of amphiboles. *Mineral. Mag.*, 42, pp. 533-563
- LOPEZ RUIZ, J. (1976). The zoning of garnet as an indicator of the P-T history of their host-rocks. *Ann. Soc. géol. Belgique*, 99, pp. 337-346.
- LOPEZ RUIZ, J.; APARICIO, A. & GARCIA CACHO, L. (1975). El metamorfismo de la Sierra de Guadarrama, Sistema central español. *Mem. Inst. Geol. Min. España*, 86, 127 p.
- MALAVIEILLE, J. (1987). Kinematics of compressional and extensional ductile shearing deformation in a metamorphic core complex of the northeastern Basin and Range. J. Struct. Geol., 9, 5/6, pp. 541-554.
- MICHARD, A. (1968a). Une zone à staurotide et disthène dans les Rehamna (Maroc hercynien). *C.R. Acad. Sci. Paris*, sér. D, 266, pp. 1639-1642.
- MICHARD, A. (1968b). La zone à staurotide et disthène des Rehamna (Maroc hercynien). Une échine tarditectonique. *C.R. Acad. Sci. Paris*, sér. D, 266, pp. 1813-1816.
- MICHARD, A. (1976). Eléments de géologie marocaine. Notes Mém. Serv. géol. Maroc, 252, 408 p.
- MICHARD, A., coordinateur (1982). Le massif paléozoïque des Rehamna (Maroc): stratigraphie, tectonique et pétrogenèse d'un segment de la chaîne varisque. *Notes Mém. Serv. géol. Maroc*, 303, pp. 130-175.
- PERCHUK, L.L. & LAVRENT'EVA, I.V. (1981). Experimental investigation of exchange equilibria in the system cordierite-garnet-biotite. *In:* SAXENA S.K. (ed): *Kinetics and equilibrium in mineral reactions*. Springer-Verlag, pp. 199-240.
- PETRAKAKIS, K. (1986). Metamorphism of high-grade gneisses from the Moldanubian zone, Austria, with particular reference to the garnets. J. Metam. Geol., 4, pp. 323-344.
- PIQUÉ, A. (1972). Contribution à la géologie structurale des Rehamna (Meseta marocaine méridionale); le

matériel paléozoïque et son évolution hercynienne dans l'ouest du massif. Thèse 3^{ème} Cycle, Univ. Louis Pasteur, Strasbourg, 101 p.

- PIQUÉ, A. (1994). Géologie du Maroc. Les domaines régionaux et leur évolution structurale. Ed. Pumag, Marrakech, 284 p.
- PIQUÉ, A. & MICHARD, A. (1989). Moroccan Hercynides: a synopsis. The Paleozoic sedimentary and tectonic evolution at the northern margin of West Africa. Am. J. Sci., 289, pp. 286-330.
- PIQUÉ, A.; HOEPFFNER, C.; JENNY, J.; GUEZOU, J.C. & MICHARD, A. (1982). Tectonique du massif hercynien des Rehamna (Maroc). Evolution de la déformation dans les zones métamorphiques hercyniennes. *Notes Mém. Serv. géol. Maroc*, 303, pp. 86-129.
- SANDIFORD, M. (1989). Horizontal structures in granulite terrains: a record of mountain building or mountain collapse? *Geology*, 17, pp. 449-453.
- SPEAR, F.S. (1984). P-T. path from garnet zoning: a new technique for deciphering tectonic processes in cristalline terranes. *Geology*, 12, pp. 87-90.
- SPEAR, F.S. (1991). On the interpretation of peak metamorphic temperatures in light of garnet diffusion during cooling. *J. Metam. Geol.*, 9, pp. 379-388.
- SPEAR, F.S. (1993). Metamorphic phase equilibria and pressure-temperature-time paths. *Mineral. Soc. Am.*, Monograph, 799 p.
- THIEBLEMONT, D. ; TRIBOULET, C. & GODARD, G. (1988). Mineralogy, petrology and P-T-t path of Ca-Na amphibole assemblages, Saint-Martin des Noyers formation, Vendée, France. *J. Metam. Geol.*, 6, pp. 697-715.
- TRACY, R.J.; ROBINSON; P. & THOMPSON, A.B. (1976). Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Massachusetts. *Am. Mineral.*, 61, pp. 762-775.

Manuscrit déposé le 13 avril 1999 Version modifiée reçue le 4 mai 2000 Acceptée le 1er décembre 2000

Adresses des auteurs : Bennacer EL MAHI Christian HOEPFFNER Mohammed ZAHRAOUI

Université Mohammed V, Faculté des Sciences Département de Géologie, Av. Ibn Batouta B.P. 1014 R.P., Rabat

Abdellah BOUSHABA

Université Sidi Mohammed Ben Abdellah Faculté des Sciences Dhar Mehraz Département de Géologie, B.P. 1796 Atlas, Fès

A 1	1	2	2	4	6	(7	0	1.5	5.4	55	57
Analyses	1	2	3	4	5	6	/	8	15	54	55	57
SiO2	31.62	35.25	35.75	35.11	34.71	35.53	33.95	30.6	37.19	35.97	31.65	35.95
TiO2	01.19	01.79	01.94	01.60	01.66	01.89	01.68	01.08	01.70	01.18	01.05	01.72
Al2O3	19.36	18.36	18.35	18.56	18.42	18.38	18.55	19.47	18.07	18.46	19.69	17.85
FeO T	19.55	17.72	17.69	17.82	19.91	19.64	18.89	20.17	16.49	17.28	19.11	17.67
MnO	00.33	00.24	00.24	00.25	00.28	00.21	00.21	00.33	00.19	00.22	00.28	00.27
MgO	12.62	10.40	10.29	10.87	11.13	10.40	10.97	12.88	09.88	10.55	11.37	10.03
CaO	00.11	00.23	00.24	00.24	00.26	00.21	00.21	00.14	00.27	00.36	00.35	00.39
Na2O	00.08	00.12	00.13	00.12	00.13	00.15	00.10	00.06	00.10	00.13	00.10	00.14
K2O	04.04	06.52	06.66	06.37	05.85	06.61	05.68	03.48	07.91	06.67	04.38	06.60
H2O	3.75	3.84	3.87	3.85	3.83	3.86	3.80	3.71	3.90	3.86	3.62	3.84
Total	92.71	94.51	95.24	94.90	94.25	94.94	94.09	91.94	95.76	94.83	89.70	94.46
Si	5.057	5.509	5.542	5.466	5.434	5.524	5.351	4.948	5.719	5.589	5.248	5.618
Al	3.650	3.383	3.353	3.406	3.400	3.368	3.447	3.710	3.274	3.380	3.457	3.288
Fe	2.615	2.316	2.293	2.320	2.395	2.294	2.490	2.728	2.120	2.245	2.649	2.309
Mn	0.045	0.031	0.031	0.033	0.036	0.027	0.027	0.044	0.024	0.029	0.039	0.035
Mg	0.010	2.423	2.376	2.523	2.598	2.411	2.577	3.105	2.264	2.442	2.811	2.336
Ti	0.143	0.211	0.226	0.187	0.196	0.221	0.199	0.130	0.196	0.137	0.130	0.201
Ca	0.019	0.038	0.040	0.039	0.0430	0.035	0.035	0.024	0.044	0.059	0.061	0.064
Na	0.026	0.035	0.038	0.037	.040	0.044	0.029	0.019	0.028	0.039	0.033	0.041
Κ	0.823	1.299	1.317	1.264	1.169	1.311	1.143	0.717	1.551	1.340	0.926	1.316
XMg	0.535	0.511	0.509	0.520	0.525	0.512	0.508	0.532	0.516	0.521	0.515	0.503
XFe	0.465	0.489	0.491	0.479	0.474	0.487	0.491	0.467	0.483	0.479	0.485	0.497
OH	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
FM	0.469	0.492	0.494	0.482	0.478	0.490	0.494	0.471	0.486	0.482	0.488	0.51

Tableau II : Analyses chimiques des biotites

Tableau III : Analyses chimiques des grenats (c: centre ; p: périphérie)

	Р				С				Р
Analyses	3	5	7	9	12	14	18	27	32
SiO2	37.24	38,31	37,64	37,03	37,35	35,44	37,39	37,11	38,30
TiO2	00,08	00,09	00,14	00,14	00,19	00,18	00,11	00,09	00,08
Al2O3	20,71	19,71	20,73	20,58	20,47	20,31	20,73	20,97	19,70
FeO T	20,82	19,43	19,14	19,30	19,06	18,18	20,48	20,79	19,40
MnO	06,76	06,24	06,92	06,73	07,19	06,75	06,78	06,76	06,20
MgO	00,76	01,29	00,73	00,77	00,75	00,68	00,77	00,77	01,26
CaO	13,10	14,08	14,45	14,69	14,32	15,10	13,48	13,25	14,00
Na2O	00,00	00,08	00,00	00,00	00,00	00,00	00,00	00,03	00,08
K2O	00,00	00,06	00,00	00,00	00,02	00,00	00,00	00,01	00,05
Total	99,51	99,30	99,75	99,29	99,40	97,29	99,77	99,78	99,07
					12 O				
Si	5,975	6,105	5,998	5,946	5,986	5,835	5,978	5,940	6,100
Al	3,917	3,703	3,893	3,894	3,867	3,942	3,906	3,955	3,700
Fe	2,794	2,456	2,550	2,591	2,555	2,586	2,738	2,783	2,455
Mn	0,918	0,842	0,934	0,915	0,975	0,942	0,918	0,916	0,840
Mg	0,181	0,305	0,172	0,184	0,179	0,166	0,182	0,183	0,304
Ti	0,009	0,011	0,016	0,016	0,023	0,022	0,012	0,010	0,010
Ca	2,251	2,403	2,467	2,528	2,459	2,663	2,309	2,272	2,400
Na	0,000	0,025	0,000	0,000	0,000	0,000	0,000	0,010	0,023
K	0,000	0,011	0,000	0,000	0,003	0,000	0,000	0,001	0,010
Σ	16,053	15,987	16,036	16,084	16,056	16,165	16,051	16,075	15,732
XFe	0,94	0,89	0,93	0,93	0,93	0,93	0,94	0,94	0,89
FM	95,35	91,80	95,28	95,00	95,15	95,51	95,25	95,28	91,50
Al	45,51	420,9	41,71	41,74	41,51	40,76	44,59	45,27	42,00
Py	02,95	04,99	02,82	02,97	02,92	02,62	02,97	02,98	04,90
Sp	14,96	13,76	15,28	14,74	15,85	14,85	14,95	14,91	13,60
Ġr	36,42	36,03	39,91	40,15	39,38	41,30	37,19	36,69	36,00
AD	00,14	03,11	00,24	00,25	00,34	00,32	00,19	00,16	03,00
Uv	00,01	00,03	00,03	00,15	00,00	00,14	00,11	00,00	00,03

Planche I : Photo 1 : Dans la zone de cisaillement (ZCMO), des porphyroblastes de biotite, contemporains de la foliation $S_{0.1}$, repris par la deuxième phase de déformation ductile et cisaillante, responsable de la foliation $S_{1.2}$. Remarquer la recristallisation par dissolution du quartz. Photo 2 : Des porphyroblastes de grenat avec on cœur syncinématique, présentant des microstructures internes, et une bordure statique ; mais l'ensemble est contourné par la schistosité externe $S_{0.1}$ avec des zones abritées. Photo 3 : Blastes de staurotide syncinématiques montrant des microstructures internes sigmoïdes Photo 4 : Reliques de disthène (kyanite) et de staurotide blindés (enclavées) dans des blastes d'andalousite thermique.

Planche II : Photo 5 : Porphyroblastes de disthène tardifs équants (sécants) par rapport à la foliation principale S_{1-2} . Photo 6 : Blastes de staurotide et de disthène tardifs par rapport à la foliation principale S_{1-2} . Photo 7 : Blastes d'andalousite thermique, avec cristallisation tardive de choritoïde, qui recoupe l'andalousite et la deuxième schistosité S_{1-2} .